Июл
Хромосомные болезни: теория и практика
В молекуле ДНК располагаются все гены, в которых запрограммирована информация о структуре белков и других молекул, из которых состоит организм человека и всех живых существ. Всего генов насчитывается около 30 тысяч. Молекула ДНК состоит из двух цепей, которые скручены в спираль. Молекулы ДНК уложены очень компактно в ядре клеток. Вместе с белками они образуют специфические образования — хромосомы. В прямом переводе этот термин означает «окрашенное тело», поскольку они хорошо окрашиваются специальными красителями. Открытие хромосом, как неких образований в ядре клетки, согласно истории биологии, может принадлежать нескольким ученым второй половины девятнадцатого века. Только в начале двадцатого века было высказано предположение об их участии в наследовании информации (Т. Морган и соавт.). Помимо ядерной ДНК существует митохондриальная ДНК, которая находится в специальных образования клетки — митохондриях, расположенных в цитоплазме клеток. Открытие этой формы ДНК состоялось в 1963 году. Митохондриальная ДНК существенно меньше по размерам ядерной, но, так же как и ядерная ДНК, несет на себе важную генетическую информацию, а ее нарушение приводит к развитию так называемых митохондриальных болезней. В отличие от ядерной ДНК, в которой располагаются тысячи генов, в митохондриальной ДНК сосредоточено несколько десятков генов, но все они кодируют крайне важные белки/ферменты для человека.
Все ядерные хромосомы в клетках человека, кроме половых клеток, представлены парами. Таких пар 23, то есть всего в ядре клеток содержится 46 хромосом (диплоидный набор), в том числе 22 пары аутосом (не половые хромосомы) и одна пара половых (ХХ или ХY). Хромосомы в каждой из 22 пар сходны по строению и по размерам. В половых клетках, представленных яйцеклеткой и сперматозоидом, содержится по 23 хромосомы (гаплоидный набор), одна из них — Х, а другая — Y хромосома, достающаяся от отца, будет определять пол человека. Поскольку женские половые клетки содержат набор из 22 хромосом и одной X половой, в сперматозоидах возможно два варианта — сперматозоид содержит 22 хромосомы плюс Х- или 22 плюс Y-половая хромосома. После соединения яйцеклетки и сперматозоида образующийся набор ХХ будет определять развитие по женскому типу, а набор ХY — по мужскому. В целом, можно сказать, что каждый человек имеет два варианта одного и того же гена, хранящегося в хромосомах — один вариант от матери, другой от отца, при этом пол определяется отцом.
Число хромосом сильно варьирует в зависимости от вида животных и растений. Таким образом, количество хромосом является признаком, характеризующим различные виды животного мира. Например, число хромосом у лошади равно 64, у гориллы — 48, у собак — 78, у рака — 200, у кошки — 38, у свиньи — тоже 38, у лягушки — 26, у картофеля — 48, у кукурузы — 20, а у некоторых видов муравьев — всего 2 хромосомы, геном холерного вибриона также представлен 2 хромосомами. Однако число хромосом и количество генов находится не всегда в пропорциональной зависимости. Например, число хромосом у обычной домовой мыши 40, а у человека — 46, при этом число генов приблизительно совпадает. Число хромосом лошади превышает число хромосом человека, однако у лошадей пока идентифицировано около 20 тысяч генов. Многие из генов животных имеют сходное строение с генами человека. Гомология (схожесть) некоторых геномов животных с геномом человека достигает более 90%. Схожесть генома у людей достигает 99,9% и лишь 0,01% генома формирует все многообразие среди людей. Понимание путей эволюции в формировании геномов человека и животных крайне важно для выявления мутаций, которые являются специфичными для человека. Эти знания необходимы для лечения болезней с применением методов генной инженерии в будущем.
Выше было сказано, что ядерный геном человека в норме величина постоянная. Он состоит из 46 хромосом, которые формируют 23 пары. 22 пары хромосом представляют собой аутосомы (парные хромосомы в клетках кроме половых), тогда как 23-я пара представляет собой половые хромосомы — XX у женщин и XY у мужчин. Для обозначения совокупности набора хромосом было введено понятие «кариотип». Впервые это термин был введен уже в 1922 российским ученым Л.Н. Делоне при изучении набора хромосом у различных представителей растительного мира. Набор хромосом человека, состоящий их 46 хромосом в норме, называют кариотипом. Помимо количества, главными признаками, формирующими кариотип, являются также размеры, строение и форма хромосом. Метод, позволяющий проводить оценку кариотипа, называется кариотипированием. Данный метод относится к цитогенетическим методам исследования генома и широко используется в диагностике хромосомных аномалий. Поскольку в течение клеточного цикла вид хромосом в ядре подвержен значительным изменениям, то принято проводить изучение кариотипа в определенной стадии деления клетки, которая называется «метафаза митоза». Для повышения точности определения применяются специфические методы окрашивания хромосом с применением красителей, что значительно повышает чувствительность метода.
Изменение кариотипа человека и животных может происходить на различных этапах развития. Если изменение числа хромосом происходит на стадии, когда образуются родительские половые клетки (гаметы), то и все клетки будущего эмбриона будут иметь измененный кариотип. В зависимости от тех или иных изменений количества и структуры хромосом возникают хромосомные болезни. Всего зарегистрировано около 700 заболеваний, связанных с хромосомными перестройками. Например, увеличение 21-й пары хромосом на одну добавочную хромосому (трисомия по 21-й хромосоме) приводит к возникновению синдрома Дауна. Лишняя X-хромосома в паре половых хромосом XY у мужчин образует изменение кариотипа на формулу 47, XXY (вместо 46, XY). Такой кариотип приводит к возникновению синдрома Клайнфельтера. Одним из основных признаков такой патологии является нарушение половых желез. Понятие мозаицизма (мозаичный кариотип) появилось, когда было обнаружено, что при дроблении зародышевых клеток в самом начале формирования эмбриона появляются клетки с различными кариотипами, т.е. один организм может содержать одновременно клоны клеток как с нормальным набор хромосом, так и с аномальным. Иными словами, организм состоит из клеток с различным генетическим материалом. Примерами такого развития могут быть синдромы Дауна, Клайнфельтера, Шерешевского-Тернера. При мозаицизме клиническая выраженность симптомов чаще имеет стертые формы, поскольку часть клеток все же имеет нормальный кариотип.
Ранее мы говорили, что причиной хромосомных аномалий могут быть ионизирующая радиация, влияние различных химических агентов, включая лекарства, экстремальная температура. Во многих случаях выявить точную причину изменений не представляется возможным. Многолетними наблюдениями доказано, что частота хромосомных аномалий резко увеличивается с возрастом матери. Кариотипирование обычно проводят в пренатальный период (в период беременности до родов). Кариотипирование проводят как инвазивным способом, так и неинвазивным. Инвазивный способ заключается в заборе клеток для исследования из матки женщины (плацента, хорион), крови из пуповины плода или околоплодных вод (амниоцентез) под контролем ультразвука. Отбираются клетки плода и в них проводят исследование хромосом. Следует учитывать, что такой способ забора материала может закончиться выкидышем (около 1% в первом триместре). Неинвазивный метод заключается в выделении генетического материала плода из крови матери. Этот метод не опасен для ребенка и плода, однако менее чувствителен по сравнению с инвазивным методом. Показанием для неивазивного способа забора материала могут быть возраст матери (старше 35 лет), наличие хромосомных аномалий у предыдущих детей. В настоящее время наиболее точным методом диагностики ряда хромосомных аномалий является метод количественной флуоресцентной полимеразной цепной реакции. При выявлении патологии решается вопрос о продолжении или прерывании беременности. Метод кариотипирования применяется для обследования детей при наличии пороков развития, а также супругов, у которых происходило рождение мертворожденных детей, и при планировании ЭКО.